Medical Kidney

Prepared by Kurt Schaberg MD Edited by: Kuang-Yu Jen, MD. Ph.D.

Nephrotic syndrome

<u>Clinically</u>: >3.5 g/24h proteinuria, hypoalbuminenia, edema, hyperlipidemia, lipiduria

<u>Think</u>: Effaces foot processes \rightarrow Leaks lots of protein into urine \rightarrow hypoalbuinemia

Minimal Change Disease

Most common in Kids.

Often after medication or recent illness \rightarrow autoantibody, cytokine or some factor <u>alters</u> <u>podocytes foot processes</u> (lose size barrier) and negative charge of GBM (lose charge barrier) \rightarrow <u>leakage of albumin</u>.

<u>Can only see on EM</u> (normal H&E and IF), hence the name, "minimal change"

Treat with steroids and underlying cause. Often doesn't require a bx in kids.

<u>F</u>ocal <u>Segmental</u> <u>G</u>lomerulo<u>s</u>clerosis

Focal (<50% of glomeruli; vs diffuse) Segmental (<50% of <u>each</u> glomerulus; vs global)

Usually, adults with Nephrotic +/- hematuria, HTN, decrease in GFR **More common in African Americans**

Pathogenesis unclear (<u>NOT</u> immune complex) Can be **secondary to: HIV, heroin, sickle cell disease, obesity**

H&E: Focal & segmental sclerosis, Uninvolved gloms look ok IF: <u>Trapped IgM &C3 in sclerotic areas</u> (passive not real complexes) EM: Widespread effacement of foot processes

Usually progresses to ESRD, poor response to steroids

Several variants, including: Collapsing (poorer prognosis) Tip lesion (better prognosis) Cellular Perihilar

aka "FSGS"

Membranous Nephropathy

Can be **primary** (idiopathic) with **antibodies to M type phospholipase A2 receptor** (PLA_2R) on podocytes (autoantibody highly specific) *or*

<u>secondary</u> to: Drugs, infection (Hep B, syphilis), tumors, SLE Rat model: Heyman nephritis

Immune complex mediated:

Antibodies react with antigen on underside of podocytes → activate complement → effaced podocytes lose slit diaphragm (lose size barrier) and produces more basement membrane between complexes (alters charge barrier) → form spikes of GBM, which also appears thicker (hence name)

H&E: <u>Diffuse thick</u> membranes Jones Silver: <u>Spikes</u>

IF: Granular IgG and C3 complexes
 Can do specific PLA₂R staining for primary
 EM: Subepithelial electron dense deposits
 With spikes of membrane in between

Variable outcomes.

Diabetes Nephropathy

History of DM, often with HTN and poor glycemic control.

Often causes **proteinuria**, but <u>not</u> outright nephrotic *syndrome*

Marked thickening of GBM (lose charge barrier) → altered GBM causes loss of foot processes (lose size barrier) as well as increased mesangial matrix. Vascular hyalinosis also.

H&E: Mesangial matrix expansion/sclerosis (Kimmelstiel-Wilson nodules), thick GBM,

glomerulosclerosis, hyalinosis of arterioles→ highlight with PAS IF: non-specific EM: thick GBM and expanded mesangium

Nephritic Syndrome

Inflammation in the Glomeruli \rightarrow Endocapillary hypercellularity with neutrophils

Hematuria (urine with dysmorphic RBCs and RBC casts), HTN, decreased GFR (renal insufficiency), edema, oliguria, +/- proteinuria.

Acute Post-Infectious/Streptococcal Glomerulonephritis

More common in children, 1-4 wks after infection Classically, after Group A Strep (S. pyogenes) Currently, Staph infection actually more common Present with fever, malaise, smoky urine, oliguria Low serum complement; ASO titers;

Immune mediated:

Circulating complexes or planted antigen \rightarrow bound by antibodies \rightarrow complement activation \rightarrow recruit PMNs \rightarrow break down GBM & podocytes with big holes \rightarrow leak **RBCs** with some protein \rightarrow glomerular cells proliferate and hypertrophy

H&E: Hypercellular gloms, PMNs, occluded lumens, +/crescents IF: IgG, C3, "Lumpy bumpy" granular EM: Subepithelial humps, focal subendothelial and mesangial deposits without GBM reaction to deposits (as seen in membranous)

Good prognosis with usual spontaneous resolution

Hypercellular gloms, closed capillary loops, PMNs, swollen endothelial cells,

System Lupus Erythematosus

Causes diverse renal disease (can essentially present in almost any way: Nephrotic, nephritis, asymptomatic, or mixed) \rightarrow major cause of morbidity and mortality in lupus!

Most common in **women of child-bearing age.** Acute or insidious in onset; chronic remitting and relapsing course Primary target organs: skin, joints, kidney, serosal membranes

ANA is highly sensitive, but not very specific Anti-dsDNA and anti-Sm antibodies are less sensitive but more specific

H&E: Diverse (5 recognized patterns) IF: "Full House" all antibodies (IgG, IgM, IgA) and complements (C3, C1q) EM: Tubuloreticular inclusions (TRI) are common

Membranoproliferative Glomerulonephritis (MPGN Type I)

Younger, Usually nephrotic and nephritic

Idiopathic or 2° to: Hep C, Malignancy, SLE

Circulating immune complexes \rightarrow trapped in glom under endothelium \rightarrow activate complement \rightarrow attract inflammatory cells \rightarrow <u>new membrane</u> made on inside

Low serum complement.

H&E: **Thickened**, **double GBMs (tram tracks)**; Mesangial and endocapillary hypercellularity common.

IF: Intense C3>IgG granular

EM: Subendothelial deposits, reduplicated GBM

No good therapy. Slowly progresses usually.

Hypercellular. Thickened membranes Membrane double contour on Jones silver Double GBM Immune complexes (Dark) Hypercellular. Thickened membranes

Dense Deposit Disease (MPGN type II)

Rare. Younger.

Autoantibody binds and activates C3 convertase \rightarrow Chronic activation of alternate complement pathway

H&E: Thickened ribbon like capillaries, few double contours of GBM. Diffuse, Hypercellular. IF: Linear and granular C3. EM: **Ribbon of** *intra-membranous* **dense deposit**

Thick ribbon like basement membranes on Jones silver stain

Rapidly Progressive Glomerulonephritis (RPGN)

Clinically: <u>Rapid onset</u> (weeks) of <u>acute</u> <u>nephritis</u> (hematuria, HTN) but more severe oliguria/anuria, elevated creatinine.

Pathology: Severe damage to glom with necrosis \rightarrow Leakage of material with parietal epithelial response \rightarrow "<u>crescents</u>" on light microscopy

Must treat immediately—<u>Poor prognosis</u> Often irreversible.

Anti-GBM Disease

Autoantibody attacks part of collagen IV in GBM \rightarrow activates complement \rightarrow severely damage GBM \rightarrow leak RBC & protein \rightarrow Crescent formation \rightarrow compresses glomerulus

Most <u>severe</u> form of RPGN→ <u>diffuse</u> crescents

Also often **impacts lung: "Good Pasture Syndrome"** →Alveolar hemorrhage→ hemoptysis

H&E: Crescent formation IF: Linear staining with IgG & C3

Immune Complex RPGN

Many immune complex diseases (e.g., Lupus, MPGN, HSP, etc..) can present with breaks in the GBM \rightarrow crescents

Looks like underlying immune complex disease, but with crescents in gloms.

Pauci-Immune Glomerulonephritis (ANCA)

Vasculitis with involvement of glomeruli NO or minimal immune complexes

Anti-neutrophil Cytoplasmic Antibodies (ANCA) 2 types of ANCA: <u>MPO-ANCA</u> (formerly p-ANCA) seen with microscopic polyangiitis and Churg-Strauss, and <u>PR3-ANCA</u> (formerly c-ANCA) seen in Wegner's.

ANCAs bind PMNs \rightarrow activate PMNs \rightarrow Severe damage \rightarrow parietal epithelium reacts and makes crescents.

Asymptomatic Hematuria/Proteinuria

Usually picked up on urinalysis

IgA Nephropathy

"Berger's disease"

<u>Most common glomerulonephritis worldwide</u>. Very common in **Asia**. Often follows a respiratory or GI illness.

Recurrent Hematuria with mild proteinuria.

Genetic or acquired abnormality of immune regulation: elevated serum IgA levels, and abnormal IgA immune complexes accumulate in mesangium.

IgA-antigen immune complexes in circulation \rightarrow planted in the mesangium \rightarrow mesangial cell proliferate and make more mesangium.

H&E: Normal or Mesangial widening IF: Mesangial IgA deposition EM: Mesangial deposits

Can see crescents, sclerosis, or endocapillary proliferation too. Essentially, Kidney part of HSP.

Thin Basement Membrane Disease

```
"Benign Familial Hematuria"
```

Isolated persistent microhematuria that does not progress. Normal renal function. Usually <u>autosomal dominant</u>. Mutations in *COL4A3* or *COL4A4* genes

H&E and IF: Normal EM: Diffusely thin GBM (<200nm)

Alport Syndrome

Inherited <u>collagen type IV mutation</u>. Mostly X-linked dominant (males).

Present with asymptomatic hematuria/proteinuria.

Progressive loss of renal function. Sensorial <u>deafness</u>.

Ocular abnormalities.

H&E: global & segmental sclerosis;

interstitial foam cells and FSGS pattern.

IF: Absence of staining with specific collagen type IV subunits

EM: Splitting and lamellation of GBMs (basket weave)

EM: Deposits in mesangium

Tubular and Interstitial Diseases

Acute Tubular Injury "ATI" or "ATN"

Clinically, "**Acute Kidney Injury**" (AKI) = rapid reduction in renal function (increased creatinine >1.5 x)

Proximal Tubular epithelial necrosis/attenuation \rightarrow can slough off into urine \rightarrow granular casts.

Causes: Ischemia, direct toxic injury

If remove inciting insult \rightarrow <u>usually recover</u>

Tubulointerstitial Nephritis

Acute Drug-induced Interstitial Nephritis

Most frequently seen with antibiotics Start drug→ fever, <u>eosinophilia</u>, hematuria, pyuria Idiosyncratic reaction (any dose) <u>Interstitial inflammation with mostly lymphs</u> with classically <u>Eos</u> and macrophages. <u>Tubulitis</u>.

Analgesic Nephropathy

Caused by <u>excessive intake of *analgesic mixtures*</u> → Chronic <u>tubulointerstitial nephritis</u> and <u>papillary</u> <u>necrosis</u>

Reflux Nephropathy/Obstructive Pyelonephritis

Common cause: Vesicoureteral reflux, calculi Grossly: <u>Blunting of calyx</u>. Irregular corticomedullary scars. Dilated ureter. Dilated and atrophied tubules. Thyroidization. Often superimposed pyelonephritis

Acute Pyelonephritis

Acute suppurative inflammation of kidney.

Usually caused by <u>bacterial infection</u>, either from ascending from bladder (UTI) due to vesicoureteral reflux (most common) or hematogenous spread. Usually Gram-Neg Bacilli from gut, esp. <u>E. coli</u>.

Acute inflammation with intratubular PMNs and tubular necrosis.

Can form an abscess.

Non-Inflammatory Vascular Disorders

Nephrosclerosis

"Benign Nephrosclerosis"

Sclerosis of renal arterioles/arteries \rightarrow Narrows lumen \rightarrow ischemia

Two mechanisms:

- 1) Medial and intimal thickening
- 2) Hyaline deposition

Causes: Hypertension and Diabetes mellitus

Ultimately causes Globally sclerotic glomeruli, Tubular atrophy, and interstitial fibrosis

Malignant hypertension \rightarrow fibrinoid necrosis of arterioles, onion-skinning

Amyloidosis

Deposits of **abnormally folded protein** (rich in β **sheets) in vessels and tissues** \rightarrow obstructs flow and makes rigid (impaired vasoreactivity)

Extracellular eosinophilic amorphous material (H&E) **Congo Red Stain** \rightarrow **"Apple green"** birefringence Trichrome \rightarrow greyish (vs Fibrosis \rightarrow bright blue)

Can subtype to determine etiology using IF, IHC, and/or mass spec

EM: randomly oriented fibrils (8-12 nm)

Thrombotic Microangiopathy (TMA)

Disseminated Intravascular Coagulation (DIC)—Consumptive coagulopathy where systemic activation of the coagulation cascade leads to thrombosis of small vessels throughout the body (and also bleeding). Can occur in many settings (e.g., sepsis, trauma, etc...). See fibrin thrombi in small vessels.

Thrombotic Thrombocytopenic Purpura (TTP)—thrombotic microangiopathy with widespread platelet thrombi in small vessels→ hemolytic anemia, purpura, thrombocytopenia, renal dysfunction. Results from ADAMTS13 deficiency. See platelet-rich occlusive thrombi.

Hemolytic Uremic Syndrome (HUS)—Similar to TTP (thrombotic microangiopathy), but thrombi mostly limited to kidneys. Usually in Kids after eating *E. Coli* O157:H7 (makes Shiga-like toxin toxic to endothelial cells), which also causes bloody diarrhea.

Look for "bland" (non-inflamed) <u>thrombi</u> in vessels

Vasculitis Inflammation of the blood vessel walls.

Can be *infectious* or <u>non</u>-infectious.

<u>Clinical findings are diverse</u> and depend on the organ(s) involved.

Generally have **constitutional symptoms** (fever, myalgias, malaise), +/- localized tissue damage due to **ischemia or bleeding** (leading to single or multiorgan dysfunction). **Elevated CRP and ESR**.

Classified mostly based on this size of the vessel usually involved and the organs involved.

Many systemic rheumatologic diseases (e.g., Rheumatoid arthritis, sarcoidosis, and Systemic Lupus Erythematosus) can have associated vasculitis.

Main immunological mechanisms of Non-infectious vasculitis:

1) Immune Complex-associated Vasculitis—Antigen-antibody/complement complexes deposit in the vessel wall → recruit inflammatory cells. Seen with many systemic immunological conditions (e.g., SLE), drug hypersensitivity, and viral infections.

2) Antineutrophil Cytoplasmic Antibodies (ANCA) — Antibodies react with neutrophil cytoplasmic antigens (ANCAs) \rightarrow activate neutrophils \rightarrow degranulate \rightarrow damages vessels.

2 types of ANCA: *MPO-ANCA* (formerly p-ANCA) seen with microscopic polyangiitis and Churg-Strauss, and *PR3-ANCA* (formerly c-ANCA) seen in Wegner's.

3) Anti-endothelial Cell Antibodies — Antibodies to endothelial cells

Variable Vessels

Behçet's disease Cogan's syndrome

Capillaries only Anti-endothelial cell Anti-GBM disease

Medium Vessel Vasculitis

Involves main visceral arteries and their branches. Inflammatory aneurysms and stenoses are common.

Polyarteritis Nodosa (PAN)

<u>Transmural necrotizing arteritis</u> of medium or small arteries (without glomerulonephritis or vasculitis of arterioles, capillaries, or venules) with <u>mixed inflammation, fibrinoid necrosis, and</u> <u>thrombosis</u>. Frequently involves renal artery and GI tract. Often patchy/segmental. Immune complex mediated. ~30% have chronic <u>Hepatitis B</u>

Small Vessel Vasculitis

Often neutrophil-predominant and <u>leukocytoclastic</u> \rightarrow fibrinoid necrosis, thrombosis, RBC extravasation.

ANCA-mediated

Microscopic Polyangiitis (MPA)

Necrotizing vasculitis of small/medium vessels. <u>Mixed inflammation</u> with fibrinoid necrosis. Very commonly involves <u>kidney</u> and lung. <u>MPO-ANCA</u> usually positive.

Granulomatosis with Polyangiitis (Wegner's)

Necrotizing <u>granulomatous</u> inflammation. Commonly impacts <u>lung</u>, <u>nasal cavity</u>, <u>and kidney</u>. In lung/head see granulomas with geographic central necrosis and associated vasculitis \rightarrow form ulcers and nodules. In kidney can see crescentic glomerulonephritis. <u>PR3-ANCA positive</u>.

Eosinophilic Granulomatosis with Polyangiitis (Churg-Strauss)

Eosinophil-rich and necrotizing granulomatous inflammation. Often impacts the lung. Associated with asthma and eosinophilia. MPO-ANCA usually positive.

Immune complex-mediated

IgA Vasculitis (Henoch-Schönlein purpura)

Vasculitis with IgA1-dominiant immune deposits.

Often involves skin (<u>palpable purpura</u>), <u>GI tract (</u>abdominal pain), <u>kidney</u>, and joints (<u>arthritis</u>). Most common systemic vasculitis in <u>kids</u>. Usually self-limited and <u>post-infectious</u> (often after URI).

Cryoglobulinemic Vasculitis

Serum cryoglobulins (Ig that precipitate out of solution at < 37° C) \rightarrow vessel deposits \rightarrow vasculitis. Often involves skin, kidney, and peripheral nerves. Highly associated with <u>Hep C</u> and monoclonal gammopathy.

Anti-Endothelial Cell Antibody-mediated

Anti-Glomerular Basement Membrane (GBM) Disease (Goodpasture Syndrome)

Impacts capillaries in kidney, lung, or both. In lung \rightarrow hemorrhage. In kidney \rightarrow crescentic glomerulonephritis.

Autosomal Dominant Polycystic Kidney Disease

Most common cystic kidney disease and genetic kidney disease. Mutations in PKD1 or PKD2. (~1/500-1000 people) Near total penetrance eventually.

Progressive formation of cysts → massive renal enlargement. Cysts lined by flattened to cuboidal epithelium. Frequent asymptomatic liver cysts and berry aneurysms.

Chronic flank pain. Renal failure. HTN. UTI's.

Autosomal Recessive Polycystic Kidney Disease

Rare. Autosomal Recessive. Mutations in PKHD1.

<u>Distinctive radiating pattern of cysts</u> in cortex and medulla lined by cuboidal cells.

Accompanied by bile duct plate malformation \rightarrow congenital hepatic fibrosis.

Often results in stillbirth or early neonatal death

(Multicystic) Renal Dysplasia

Due to abnormal metanephric differentiation. (**Maldeveloped**; Despite name, <u>*not* a neoplasm</u>!) Usually sporadic.

Variable cyst formation.

Abnormal, immature nephrons.

Disorganized parenchyma,

Immature glomeruli and tubules. Smooth muscle collarettes.

Metaplastic cartilage.

Usually associated ureteral abnormality

Acquired (Dialysis-associated) Cystic Disease

Occurs in the setting of long-term dialysis. Cysts lined by tubular epithelium. Frequent calcium oxalate crystals. Usually asymptomatic. Special RCC variant can occur in this setting: Acquired cystic disease-associated renal cell carcinoma

Simple Cysts

Very common. Single or multiple. Lined by a single layer of cuboidal to atrophic epithelium.

Transplant Pathology

Hyperacute Rejection

Immediate (mins to hours). Extremely rare today. **Pre-sensitizied patient with circulating antibodies**.

Neutrophil and platelet margination Endothelial damage Intravascular coagulation and <u>necrosis</u>.

Acute T Cell–Mediated Rejection

Mediated by T cells Clinically: Increase in Creatinine & Renal failure

Mild (I): Interstitial T-cell inflammation, edema, and Tubulitis

Moderate/severe (II-III): Arteritis and endotheliitis

Only score non-fibrotic/atrophic areas

<u>DDX</u>: BK Polyoma virus, Obstruction, (Allergic) Interstitial nephritis, PTLD

Acute Antibody Mediated Rejection

"Humoral" Antibody-mediated
Antibodies made by recipient attack HLA antigens on
endothelium

microvascular inflammation
(glomerulitis and peritubular capillaritis)

<u>Histopathology (not entirely specific, but suggestive):</u> Neutrophils and/or mononuclear cells in peritubular capillaries and/or glomeruli (\rightarrow). ATN-like and arteritis.

More *specific* findings: IHC or IF: **(+) C4d**

Serum: (+) DSA

Chronic Rejection

Months to years post-Transplant Gradual increase in serum Creatinine Progressive proteinuria

"Transplant Arteriopathy": Concentric ______ proliferation of smooth muscle and foam cells

"Transplant Glomerulopathy": Double contouring of GBMs

Chronic Allograft Nephropathy

→ Damage from many etiologies (Multifactorial: ischemia, HTN, reflux, rejection) → Tubule atrophy and fibrosis

Polyomavirus Nephropathy

Usually **BK virus**

Virus common in bladder mucosa ightarrow immunosuppression ightarrow infection of renal parenchyma

Inclusions in tubular epithelium

Interstitial inflammation → tubular injury/atrophy Can <u>mimic rejection</u> histologically (but + inclusions and no vasculitis/endotheliitis)

IHC: (+) SV40

Treatment → antivirals and reduce immunosuppression (opposite of rejection!)

Calcineurin Inhibitor Toxicity

E.g., Cyclosporine and Tacrolimus (used for immunosuppression)

Present with AKI clinically

Histologically <u>not</u> specific: <u>Isometric vacuolization of renal tubules</u> Arteriolar hyaline Thrombotic microangiopathy

