Mesenchymal tumors of the GI Tract

Gastrointestinal Stromal Tumor (GIST)

Derived from interstitial cells of Cajal (pacemaker cells of GI tract)

Most common in Stomach (60%) followed by Small Bowel (30%)

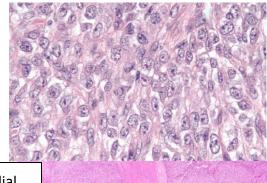
Most often <u>spindled</u>, but can be epithelioid or pleomorphic

Intramural, submucosal, or subserosal location

Molecular: Mutually exclusive **cKIT** (80%) or **PDGFRA** (10%) receptor tyrosine kinase mutations → Can shrink pre-operatively with receptor tyrosine kinase inhibitors (e.g., imatinib) Mainstay therapy = surgery, but can use RTK inhibitors if metastatic/recurrent Increased in NF1 patients

IHC: (+) CD117 (cKit), DOG1, CD34

Variable behavior → estimate risk of progressive disease based on size, mitoses, location (see table below)


SDH-mutated GIST (without a cKit mutation) → **pediatric**/familial **Epithelioid**, **multinodular**, **metastasize to lymph nodes**, don't respond to RTK inhibitor therapy (no cKit mutations!), but overall more indolent;

Characterized by loss of SDHB IHC staining

<u>Carney-Stathakis syndrome</u> → paraganglioma and GIST with germline SDH mutation

<u>Carney's Triad</u> → GIST, pulmonary chondroma, paraganglioma, somatic SDH mutation

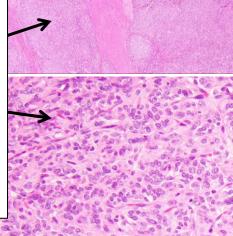


Table 1. Prognosis of Gastrointestinal Stromal Tumor (GIST) Based on Long-Term Follow-Up of Observation of 1684
Patients in Armed Forces Institute Studies Prior to Imatinib*

	Tumor Parameters		Patients With Progressive Disease During Follow-Up and Characterization of Malignant Potential, %	
Group	Size, cm	Mitotic Rate per 50 HPFs	Gastric GISTs	Small Intestinal GISTs
1	≤2	≤5	0 Very low if any	0 Very low if any
2	>2 ≤5	≤5	1.9 Low	4.3 Low
3a	>5 ≤10	≤5	3.6 Low	24 Intermediate
3b	>10	≤5	12 Intermediate	52 High
4	≤2	>5	0 Lowt	50 Hight
5	>2 ≤5	>5	16 Intermediate	73 High
6a	>5 ≤10	>5	55 High	85 High
6b	>10	>5	86 High	90 High

^{*} Note significantly worse prognosis in small intestinal GISTs. Based on data from Miettinen et al.^{28,29} HPFs indicates high-power fields.

[†] Denotes tumor categories with very small numbers of cases insufficient for prediction of malignant potential.

Neural Origin

Arise from myenteric plexus or other nerves

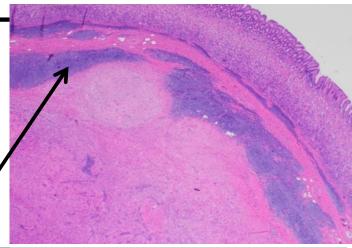
Schwannoma

Benign nerve sheath tumor.

Schwannian differentiation

Most common in **stomach** in submucosa or muscle.

Well-circumscribed. Unencapsulated.

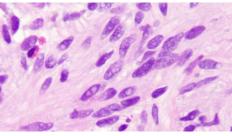

Spindle cell proliferation with varying cellularity.

Often have a lymphoid cuff, but Verocay bodies and

hyalinized vessels often absent (unlike elsewhere).

Rare subtype: Microcystic/reticular

IHC: (+) S100 (strong, diffuse), Often (+) GFAP


Mucosal Schwann cell hamartoma

Small, sporadic, benign. Present as a colon **polyp**

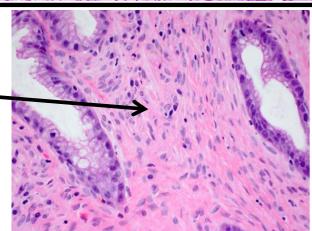
Uniform bland spindled cells expanding lamina propria

between crypts.

IHC: (+) S100

Perineurioma

Benign peripheral nerve sheath tumor composed of cells with **perineurial differentiation**.


Typically, colonic, small, and solitary polyp.

Bland spindled cells expanding lamina propria and distorting glands. Can have whorls.

IHC: (+) EMA (weak), GLUT1, clauidin-1

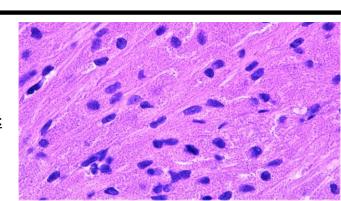
Perineurial-<u>like</u> proliferations can be associated with a serrated polyps (these are likely reactive changes)

Sometimes tumors with this morphology don't express any markers → can call "Benign fibroblastic Polyp"

Granular cell tumor

Benign neoplasm with neuroectodermal differentiation.

Often **esophagus**, submucosal → look out for


pseudoepitheliomatous hyperplasia (SCC mimic)

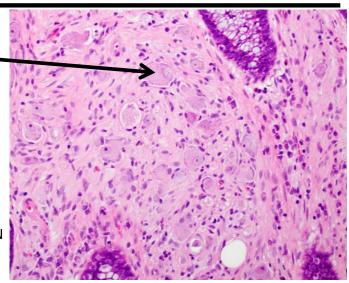
Epithelioid to spindled cells with abundant eosinophilic

granular cytoplasm highlighted by PASd

ATP6AP1 or 2 mutations

IHC: (+) \$100, CD68, Inhibin, Calretinin

Ganglioneuroma

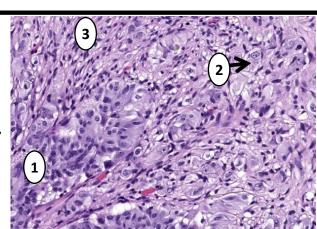

Benign neoplasm composed of mature ganglion cells and nerves (unmyelinated axons with Schwann cells). Usually in the colorectum.

IHC: Schwann cells (+) S100,

Ganglion cells (+) Synaptophysin, calretinin

Usually sporadic, small mucosal polyps detected incidentally.

When multiple/diffuse and/or syndrome-related (MEN 2B, Cowden, and NF1) → *Ganglioneuromatosis*



Gangliocytic paraganglioma

Most common in second part of the **duodenum**, mostly benign

- 3 characteristic elements:
- 1) Epithelioid neuroendocrine cells (like paraganglioma),
- 2) Ganglion cells,
- 3) Spindled Schwann cells

Stains: (+) S100 in Schwann cells, (+) Synaptophysin in neuroendocrine cells

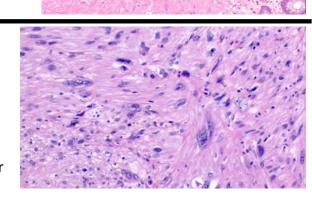
Muscle Origin

Stains: (+) Desmin, Caldesmon, SMA, Calponin

Leiomyoma

Benign smooth muscle tumors,

Most common in **colorectum** (< 1 cm, **polypoid** arising from muscularis mucosae, pedunculated, asymptomatic) and esophagus (Larger, arising from muscularis propria, symptomatic)


Bland, spindled cells, fascicular architecture

Minimal mitotic activity (<1 per 50 HPF) and no tumor-type necrosis

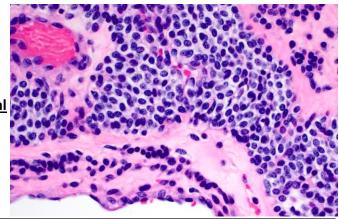
Malignant smooth muscle tumors, aggressive. Spindle cell neoplasms with atypia, mitoses, and/or necrosis.

If multiple smooth muscle tumors in an immunosuppressed patient -> consider an EBV-associated smooth muscle tumor

Glomus Tumor

Derived from modified smooth muscle cells of the perivascular glomus body.

Most common in **stomach**, usually benign.

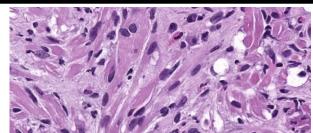

Round, uniform nuclei with pale eosinophilic <u>polygonal</u> cytoplasm arranged in sheets and nests

Richly vascular, hyalinized stroma.

Can be mistaken for NET morphologically.

Stains: (+) SMA, (+/-)Caldesmon;

Focal synaptophysin is a potential pitfall!



Rhabdomyosarcoma

Malignant tumors with skeletal muscle differentiation.

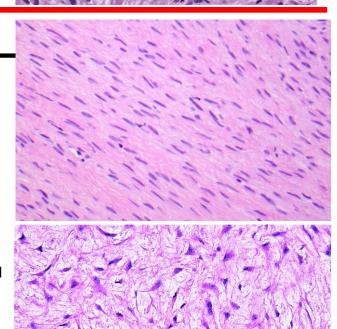
Stains: (+) Myogenin, MyoD1

Multiple subtypes (Embryonal pictured here with striated "strap" cells; see soft tissue handout for more)

Fibroblastic Origin

Desmoid Fibromatosis

Bland, spindled to stellate cells. Pale chromatin.

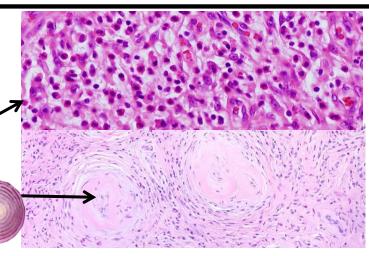

Sweeping fascicles. **Infiltrative growth**. Few mitoses.

Most common in small bowel mesentery; usually large.

Locally aggressive, non-metastasizing.

IHC: (+) SMA, nuclear β-catenin (80%),

WNT/ β -catenin signaling dysregulation due to somatic CTNNB1 or germline APC mutations (so see with Familial Adenomatous Polyposis)

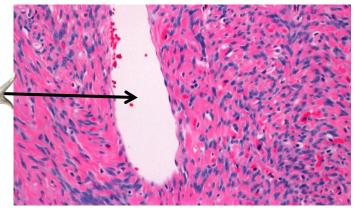


Inflammatory fibroid polyp

Benign. Most common in stomach, proximal duodenum, or ileum→ can cause intussusception Centered in submucosa but extend to mucosa Spindled to plump cytologically bland cells and associated <u>eosinophils</u> and lymphocytes; often myxoid background. Cells proliferate/circle around vessels, whorled→ "onion-skinning"

IHC: (+) CD34

Molecular: PDGFRA mutations


Solitary Fibrous Tumor

Variable stromal and perivascular hyalinization

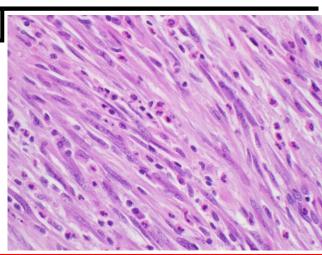
IHC: (+) STAT6, CD34

Molecular: NAB2-STAT6 rearrangement → best seen

with STAT6 IHC

Inflammatory Myofibroblastic Tumor

Usually in children and young adults "IMT"
Plump spindled to stellate cells in myxoid to
collagenous stroma with associated <u>lymphoplasmacytic</u>
inflammation. Fibroblastic/myofibroblastic.


Vesicular chromatin, small nucleoli.

IHC: (+)SMA, ~60% stain with ALK; (-/+) Desmin

Molecular: ~60% have ALK rearrangements;

~5% show ROS1 fusions

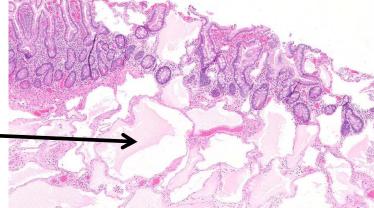
Low risk for recurrence; very rare metastases

Vascular Origin

Lymphangioma

Benign, lymphatic tumor.

Most common in small intestine.


Often congenital, presenting in childhood.

Thin-walled, dilated spaces with a single layer of endothelial-lined lymphatic spaces containing

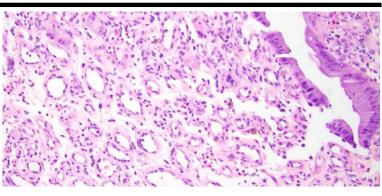
chylous or serous material.

Lymphangiomatosis—multicentric or

extensively infiltrating lymphangioma. Stains: (+) CD31, D2-40,

Hemangioma

Benign vascular tumor, but can bleed.

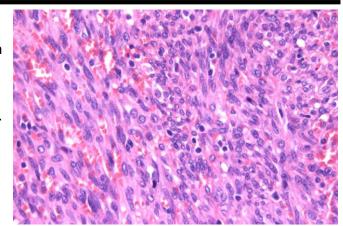

Varying morphologies with different caliber

vessels (e.g., Cavernous)

Should <u>NOT</u> see: Papillary growth, multilayering,

cellular atypia, mitoses, and necrosis

Stains: (+) ERG, CD31, CD34, FLI1; Ki67<10%



Kaposi Sarcoma

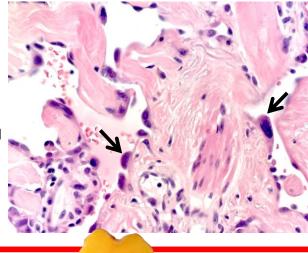
HHV8-associated vascular neoplasm often occurring in immunocompromised patients (classically AIDS) Infiltrating small, irregular vascular channels and fascicles of non-pleomorphic spindled epithelioid cells. Erythrocyte containing clefts. Hyaline globules.

IHC: (+) CD31, CD34, ERG, HHV8 (LANA-1)

Often asymptomatic, can bleed

Angiosarcoma

Associated inflammation.


Malignant vascular tumor with endothelial differentiation. **Aggressive**.

Often high-grade tumors with nuclear atypia, mitoses, and necrosis. Hobnailed (\rightarrow) or papillary projections

<u>Variably</u> vasoformative, with anastomosing vessels to solid sheet-like growth. Infiltrative, dissecting, complex growth.

IHC: (+) ERG, CD31, CD34; High Ki67 (usu. >40%)

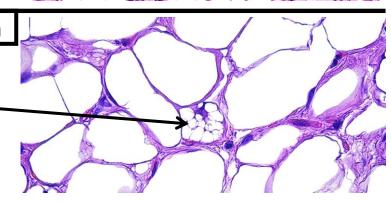
Epithelioid angiosarcomas can stain with CK

Adipocytic Origin

Lipoma

Benign tumor composed of <u>mature adipocytes</u>. No cytologic atypia. Can occur anywhere. Most common in colon in submucosa. Often grossly recognizable. "Pillow sign" on endoscopy.

If <u>mucosal</u> → associated with <u>Cowden's syndrome</u> (but easy to confuse with pseudolipomatosis, so consider doing S100 to confirm it's fat)

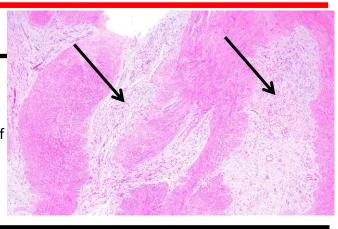

Well-differentiated liposarcoma

Malignant adipocytic tumor.

Often lipoblasts or atypical cells with smudged nuclei in fibrous septae

MDM2 amplifications by FISH.

Relatively common in retroperitoneum, but rare in GI tract proper.

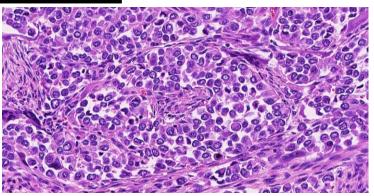

Rare/Other

Plexiform Fibromyxoma

Benign tumors that arise in the **stomach** antrum/pylorus. Multinodular, centered in muscularis propria composed of bland spindled cells in myxoid stroma.

IHC: Non-specific, mostly negative. (+) SMA

Molecular: MALAT1-GLI1 fusion

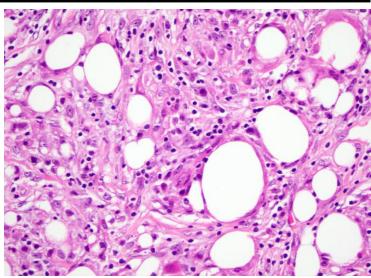


Gastrointestinal Clear Cell Sarcoma

Malignant. Neuroectodermal differentiation → so "GNET" for GI neuroectodermal tumor

Alveolar/nested architecture; epithelioid to spindled cells with eosinophilic to clear cytoplasm, vesicular chromatin, and scattered multinucleated giant cells.

IHC: (+) S100, SOX10, CD56, Synaptophysin (-) HMB-45, MelanA, and MiTF (unlike usual CCS) FISH: EWSR1 translocation (with ATF1 or CREB1)

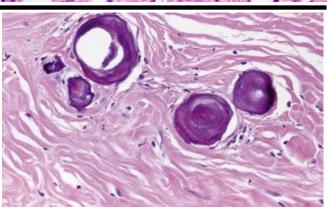

Sclerosing Mesenteritis

Idiopathic fibroinflammatory tumefactive lesion (likely non-neoplastic)

Includes a combination of:

- 1)Fibrosis,
- 2)Fat necrosis, and
- 3)Chronic inflammation (lymphocytes, histiocytes, and occasional germinal centers)

Usually self-limited and cured by surgery


Calcifying Fibrous Tumor

Benign neoplasms composed of hypocellular dense stromal collagen with psammomatous and dystrophic calcifications and patchy chronic inflammation.

Well-circumscribed, unencapsulated.

Usually affects children and young adults.

IHC: (+)CD34

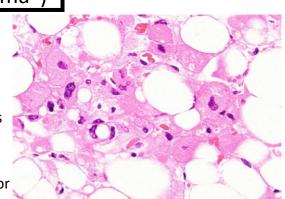
Synovial Sarcoma

Malignant spindle cell ("monophasic"), possibly with epithelioid to glandular component ("biphasic") Uniform spindle cells with almost no matrix and somewhat vesicular nuclei.

Characteristic SS18 gene rearrangements.

IHC: Patchy keratin and EMA.

Mostly epithelioid cells with some spindled component.


Cytoplasm granular, eosinophilic to clear.

Admixture of adipocytes, epithelioid cells, and intimately associated thick-walled blood vessels.

Variable expression of smooth muscle and melanocytic markers

IHC: (+) HMB-45 & Cathepsin K, also often Melan-A, MITF (and smooth muscle markers)

Marked nuclear atypia and mitoses → risk of metastatic behavior

IHC Panels

First Round (most common DXs):

CD117 (ckit) GIST

Desmin → Smooth Muscle tumors

S100 → Neural Tumors (and other, rarer, neural crest tumors)

Second Round (less common tumors):

EMA → Perineurioma

Nuclear β -Catenin \rightarrow Fibromatosis

ALK → Inflammatory myofibroblastic tumor

Melan-A and HMB45 → PEComa

Calretinin, CD68 → Granular cell tumor

SMA → Myofibroblastic or muscle differentiation (or Glomus)

CD31 or ERG → Vascular tumors

CD34 > Vascular tumors, GIST, Inflammatory fibroid polyp, some NF cells