Respiratory Cytology

WHO System

Diagnostic Category	Risk of Malignancy (ROM)		
	Brush, Wash, Sputum	FNA	
Insufficient/Inadequate/Non-diagnostic		~50%	
Benign	~40%	~40%	
Atypical	~80%	~50%	
Suspicious for malignancy	~90%	~80%	
Malignant	~100%	~95%	

Modified from: WHO Reporting System for Lung Cytopathology

Note: The cited ROM ranges are very broad (for nondiagnostic sputum it's literally 0-100%!), so I've chosen to give simplified approximate numbers. But generally, it's close to 100% for "malignant" and still almost 50% for "Benign" (indicating a high pretest probability of malignancy). These numbers will likely be refined in future editions.

Brief Commentary

Many lung tumors, other than classic Squamous cell carcinoma, Adenocarcinoma, and Small cell carcinoma, require immunohistochemistry (e.g., carcinoids) for a more definitive diagnosis. So, its helpful to get a cell block or tissue biopsy. This is also helpful for ancillary testing as it's pretty standard to get PD-L1 and molecular testing to guide treatment.

So, two things to remember:

- 1) Try to maximize tissue in cell block or biopsy size for ancillary testing
- 2) Try to preserve this tissue for clinical testing (i.e., don't do unnecessary studies)

Since many rare tumors are difficult, if not impossible, to diagnose on a small biopsy, I'm going to focus these notes on the common tumors/conditions that can be diagnosed by cytology.

For additional information on these other tumors, please refer to my general "Lung Tumor" notes.

Insufficient/Inadequate/Non-diagnostic

A specimen that for quantitative or qualitative reasons does not explain the targeted lesion. Possible reasons: low cellularity, necrosis, poor preparation. Any atypia precludes this Dx.

These terms can be used interchangeably and labs should pick one. Generally though, "Insufficient" and "Inadequate" are used for cases where there is a lack of cellular material, while "Non-diagnostic" is used in cases where there are benign findings that just don't explain the mass lesion.

If respiratory specimens have no macrophages and/or respiratory epithelial cells \rightarrow Inadequate

<u>Common scenario</u>: An FNA of a lung mass shows only benign bronchial epithelium \rightarrow can report as either "*Non-diagnostic*" (as doesn't explain a mass lesion) <u>or</u> "*Benign*" with a caveat that this may not be representative and that repeat biopsy may be necessary.

Kind of goes without saying, but I often say, "Correlation with clinical and imaging findings is required."

Normal Tissue

Ciliated respiratory epithelium

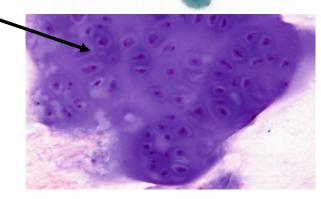
Predominant epithelial cells that line the trachea and bronchi--**Ciliated with a terminal bar** looks like "Beaker" from the Muppets Basal round/oval nuclei with even chromatin

Squamous cells

Often represent oral contamination! Identical to squamous cells at other sites Abundant keratinizing cytoplasm

Can see squamous metaplasia with irritation/inflammation

Goblet cells


Mixed in with ciliated respiratory cells Mucin-filled cytoplasmic vacuole Basal oval to flat nucleus Commonly increased in chronic conditions like: COPD, Asthma, Bronchiectasis. (so be careful not to over interpret as mucinous neoplasm!)

Alveolar macrophages

Abundant cytoplasm, often with granular debris/pigment - Can have anthracotic pigment (black) or Hemosiderin Vesicular nuclei with fine chromatin

Cartilage (and other bronchial tissue)

Extracellular thick material with chondrocytes in lacunae Can also see other bronchial tissue like smooth muscle/fibrous tissue, bronchial glands, lymphocytes, etc...

Benign Lesions

Unequivocal benign cytologic findings which may or may not be diagnostic of a specific inflammatory process or benign neoplasm. Correlation with imaging and clinical findings (the "triple test," with pathology), is necessary to make sure the cytology findings match.

Acute Inflammation

Inflammation dominated by <u>neutrophils</u>. Often varying degrees of degeneration/necrosis. May see bacteria and/or fungus. Other inflammatory cells/debris may be present.

DDX: Often infectious (pneumonia)

Also: Aspiration, infarction, vasculitis, Unlikely to be malignancy

If seen at ROSE \rightarrow send cultures!

Granulomatous Inflammation

Collections of <u>epithelioid histiocytes</u> and <u>giant cells</u> Often admixed lymphocytes, neutrophils,

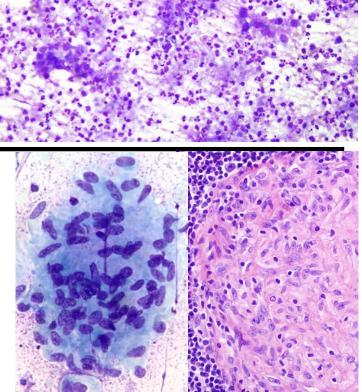
eosinophils ±Necrosis

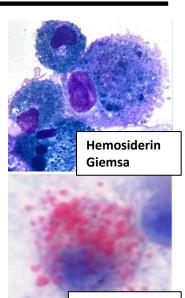
Histiocytes have **syncytial**, **epithelioid cytoplasm Elongated**, **often indented ("barefoot") nuclei** Look like a school of fish swirling around

DDX: Infection (esp. TB and Fungus)→<u>Buq stains!</u> Autoimmune (Sarcoidosis, vasculitis), Hypersensitivity pneumonitis, drug reaction, aspiration

Other inflammation

Lymphocytes

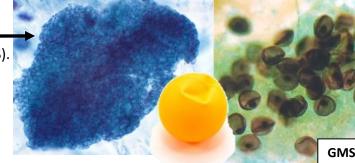

DDX: Lymphocytic interstitial pneumonia, Hypersensitivity pneumonitis, Sarcoidosis, Bechet disease, Lymphoma, Organizing pneumonia


Eosinophils: Lots of eosinophils, Charcot-Leyden crystals, DDX: Eosinophilic pneumonia, Asthma, Allergic bronchopulmonary aspergillosis, Churg-Strauss disease, Parasitic infections

Histiocytes

Hemosiderin-laden → Alveolar hemorrhage Lipid-laden macrophages (foamy, Oil Red O+) → Aspiration/Lipoid pneumonia, EVALI, Amiodarone toxicity, Organizing pneumonia

Note: BAL from pediatric patients are often sent for ORO staining to look for lipid as it's thought to be indicative of aspiration, but this isn't actually all that sensitive or specific. (PMID: 36998564)



Lipid, Oil Red O

Extracellular material

Pneumocystis jirovecii

Infects immunocompromised hosts (classically AIDS). Frothy, proteinaceous casts "Crushed ping pong balls" with central dot (+) GMS (can see negative impression on conventional stains); (-) PAS

PAS

Alveolar proteinosis

Abnormal accumulation of surfactant protein in alveoli. Can be Congenital, Primary, or Secondary. Dense, amorphous globules in a dirty, frothy background (+)PAS/D, Oil Red O; (-) GMS

Curschmann spirals

Coils of inspissated mucus. Non-specific, but frequently associated with asthma and smoking.

Charcot-Leyden Crystals

Orangeophilic rhomboid/needle-shaped crystals formed from the granules within degenerating eosinophils. Seen in allergic conditions e.g., Asthma

Ferruginous bodies

Fiber particles, usually asbestos, encrusted with proteins containing iron salts. Important to mention given possible mesothelioma risk. Look like dumbbells.

Corpora amylacea

Spherical, concentrically laminated, noncalcified casts composed of glycoproteins. Non-specific.

<u>Amyloid</u>

Dense, amorphous, waxy material with classic "apple green" birefringence under polarized light with Congo red.

Reactive Epithelial Changes

Warning!!

Inflammation can cause significant reactive changes/atypia. Always reconsider ("pull back") if there is a lot of inflammation. Frequently diagnose as <u>"Atypical."</u>

<u>Causes of inflammation</u>: Pneumonia, ARDS, Infarction, Bronchiectasis, Abscess, Intubation, Radiation, Chemotherapy, Viral/fungal infections, Oxygen therapy.

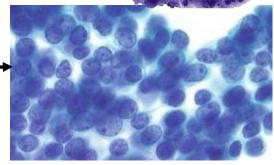
Respiratory epithelium:

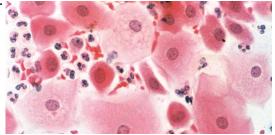
Enlarged nuclei, Papillary architecture, Often <u>retain terminal bars and cilia</u> (good clue!) Relatively uniform oval nuclei, single nucleolus. Abundant cytoplasm. <u>Spectrum</u> of change. "<u>Napoleon Hat sign</u>"→ pinched shape pneumocytes suggests reactive nature "Creola body"—3-D clusters of bronchial epithelium enlarged nuclei, vesicular chromatin, and smooth nuclear membranes.

Basal (reserve) cell hyperplasia:

(mimic of small cell carcinoma) Abnormal multiplication of basal cells (form several layers) Often see with squamous metaplasia Cohesive sheets. Uniform high N:C ratio cells. Round to oval nuclei. Even chromatin (similar to respiratory cells). Small/absent nucleolus. Clean background. No mitoses. [vs small cell carcinoma with irregular contours/molding, lots of mitoses/necrosis]

Squamous metaplasia: -

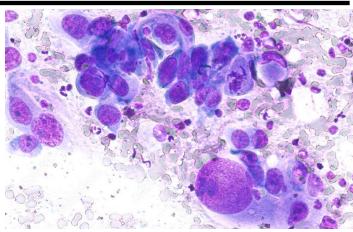

Dense cytoplasm with some keratinization. Variable N:C ratio. Round to slightly irregular nuclei.


<u>Type 2 pneumocyte hyperplasia</u>

Large cells with cuboidal cytoplasm. Large nuclei with prominent micronucleoli. Sometimes vacuolated. Can see viral inclusions.

Chemotherapy/Radiation changes

Enlarged cells with big nuclei (<u>cytomegaly</u>) Maintained, low N:C ratios. Smudged, hyperchromatic chromatin. Often <u>vacuolated</u> cytoplasm. Can be <u>multinucleated</u>.



Malignant

Non-small Cell Carcinoma "NOS"

Used for FNAs/biopsies without morphologic squamous or glandular morphology and indeterminate/negative IHC stains.

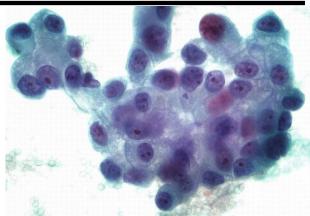
If a case requires stains to make a definitive Dx, say "Non-small cell carcinoma, favor [adenocarcinoma or squamous cell carcinoma]"

Adenocarcinoma

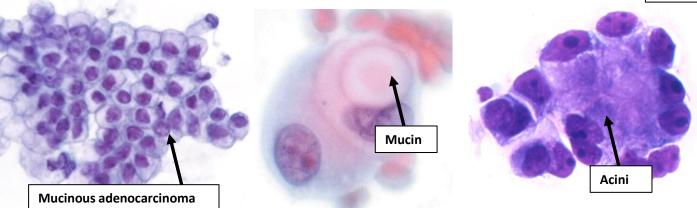
Most common type of primary lung cancer. Glandular differentiation

Delicate, granular to vacuolated to foamy cytoplasm Frequent prominent nucleoli.

Arranged in flat sheets, papillae, acini, etc... Acini= nuclei at periphery, cytoplasm in center Eccentric nucleus.


Can see intracytoplasmic (or extracellular) mucin Coarse to fine chromatin (usu. NOT hyperchromatic) Nuclear membrane irregularities


Well-diff: Intranuclear inclusions and grooves Can see background necrosis.


IHC: (+) TTF1, NapsinA; (-) p40, CK5/6

Note: Mucinous adenocarcinomas may <u>not</u> express TTF1 (see lung tumor notes for more info)

Distinction between adenocarcinoma in situ, minimally invasive, and invasive adenocarcinoma is not accurate on FNA (and small biopsy).

Squamous Cell Carcinoma

Malignant epithelial tumor with keratinization and/or intercellular bridges.

Keratinization (Orangeophilia on Pap, Robin's egg on Giemsa)

Dense cytoplasm. Well-defined cell borders.

Central large, hyperchromatic, irregular nucleus. Usually NO prominent nucleoli. **Polygonal**, elongated, or bizarre shapes.

Keratin Pearls.

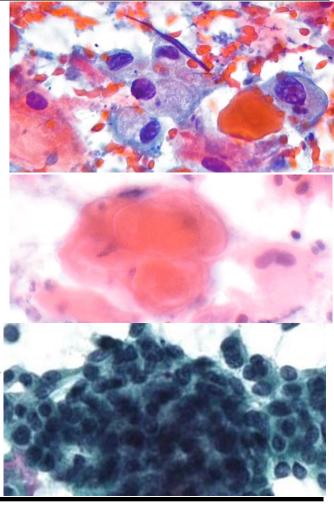
Dirty, necrotic background.

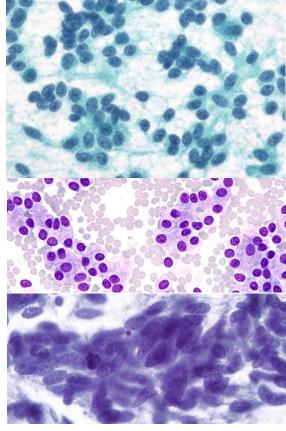
Basaloid SCC has less specific morphology without keratinization. Clusters of high N:C ratio cells with coarse chromatin \rightarrow requires IHC to confirm Dx and exclude small cell carcinoma

Cannot distinguish primary lung SCC from SCC metastasis unless other primary is HPV+ and lung tumor is HPV-, or, potentially, by molecular signature.

IHC: (+)p40, CK5/6; (-) TTF1, NapsinA, HPV ISH, NUT,

Carcinoid tumor


Well-differentiated tumors with pure neuroendocrine differentiation.


Small, loosely cohesive cells. Epithelioid to plasmacytoid. Sometimes spindled. Round/oval nuclei with stippled "salt and pepper" chromatin. Dense, granular cytoplasm. Cellular smears. No necrosis.

Bx: Nested and/or trabecular architecture

IHC: **(+)Synaptophysin, Chromogranin, CD56, ISNM1** Ki67 low (<10%), but not officially used for grading.

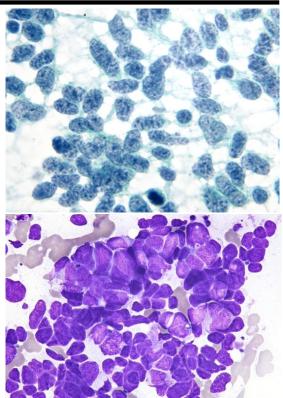
Unless you see necrosis or mitoses, it is often challenging to distinguish between typical and atypical carcinoid tumors on small biopsies. It is recommended to usually just report as "Carcinoid/Well-differentiated neuroendocrine tumor, NOS" and defer final subtyping to a resection specimen.

Small Cell Carcinoma

Small cell size (usually smaller than 3 resting lymphocytes)
Scant cytoplasm. Unclear borders.
Angulated nuclei. Frequent nuclear molding.
Densely cellular sheet-like growth. Cells fusiform to round.
Finely granular chromatin (*no* nucleoli)
High mitotic rate [>10 mitoses per 2 mm² (median 80)]
Frequent <u>necrosis</u> (often large zones) and apoptoses.
Often discohesive with many single cells.
Frequent crush artifact→ chromatin smearing.

Technically a morphologic diagnosis, but IHC is useful to exclude other diagnoses (lymphoma, SCC, sarcoma), and it's reassuring to have NE marker staining (up to 10% will be negative though!).

IHC: (+) AE1/AE3, Synaptophysin, ISNM1, CD56, TTF1 (-) p40, CK20, CD45


Ki67 often essentially 100% (if it's lower than 60% consider another Dx!)

Can be "combined" with other tumors, such as SCC. Most common Neuroendocrine Neoplasm in the lung.

Large Cell Neuroendocrine Carcinoma

Difficult to diagnose by cytology, except perhaps if there is a good cell block as need to see neuroendocrine architecture of nesting, palisading, and/or rosettes (cytomorphology itself is nonspecific).

	Typical carcinoid	Atypical carcinoid	Large cell neuroendocrine carcinoma	Small cell carcinoma
Smoking association	No	Maybe	Yes	Yes
Mitoses/2mm ²	0-1	2-10	>10 (median 70!)	>10 (median 80!)
Necrosis	No	Focal, if any	Yes	Yes, extensive
Neuroendocrine morphology	Yes	Yes	Yes	Yes
Ki-67 Proliferation index	Up to 5%	Up to 30%	40-80%	Often almost 100%
TTF1 expression	Usually No, sometimes in peripheral/spindled		Yes (70%)	Yes (85%)
Combined with NSCC component	No	No	Sometimes	Sometimes

Adapted from: WHO Classification of tumors of the lung, pleura, thymus, and heart. 2015 and 2021

Other Malignancies

Metastases!!!

Always a consideration in the lung. Consider history! Common sites: GI tract, Breast, Kidney, Melanoma.

Rare Carcinomas

(that are hard to Dx on FNA ;-) NUT carcinoma Thoracic SMARCA4-deficient undifferentiated tumor Carcinosarcoma Pulmonary blastoma Adenosquamous carcinoma Pleomorphic carcinoma

Lymphomas

Cellular smears of discohesive lymphocytes. Lymphoglandular bodies (cytoplasmic fragments) Can be low-grade (e.g., Extranodal marginal zone lymphoma) or high-grade (e.g., DLBCL)

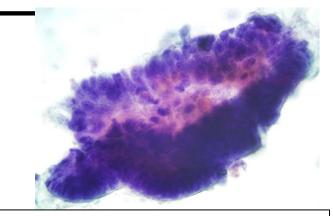
<u>Sarcomas</u>

Intimal sarcoma Leiomyosarcoma Synovial sarcoma Angiosarcoma

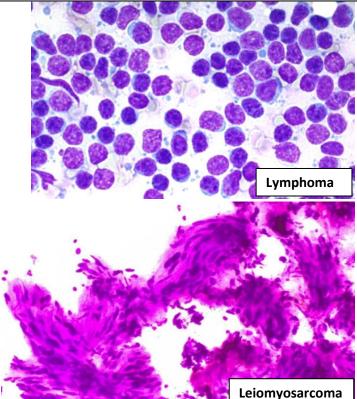
Salivary gland carcinomas

Mucoepidermoid carcinoma Adenoid cystic carcinoma Epithelial-myoepithelial carcinoma

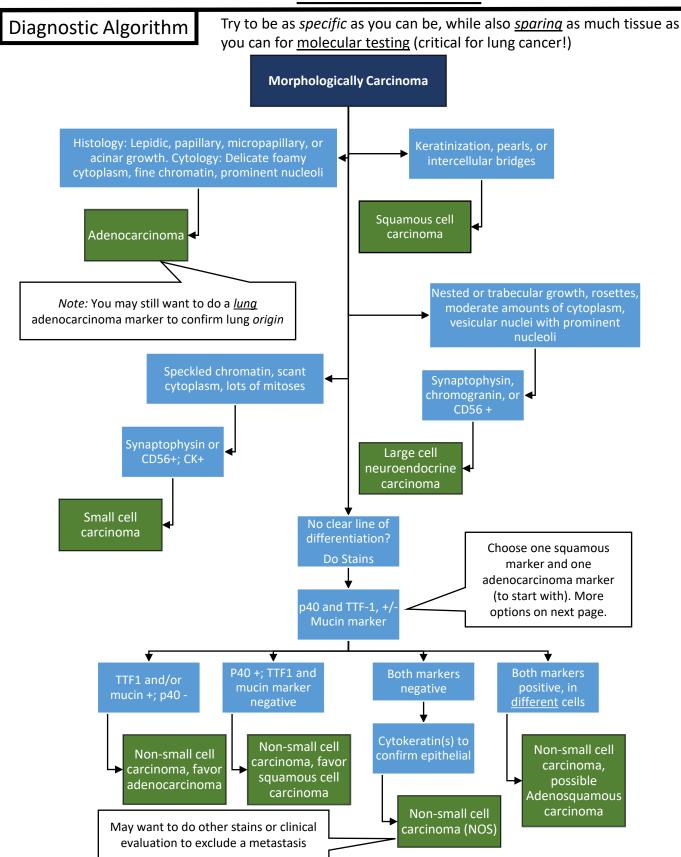
Paraganglioma Mesothelioma Germ Cell tumors


Atypical

A specimen with features *predominantly* seen in benign lesions and minimal features that raise the possibility of malignancy (either insufficient quality or quantity).


Often used in the setting of inflammation, where there can be considerable reactive changes to not "overcall" malignancy (thereby maintaining a higher negative predictive value of "Benign").

Suspicious


A specimen suggestive of malignancy but that has insufficient features for a definitive diagnosis (either qualitative or quantitative). [High degree of concern and risk of malignancy \rightarrow sometimes enough for next step in management depending on clinical setting.]

Colon cancer metastasis with glands of columnar cells with hyperchromatic, penicillate nuclei. Background of mucin and necrosis.

Classification of Lung Carcinomas with <u>Limited Tissue</u>

Adapted from: WHO Classification of tumors of the lung, pleura, thymus, and heart. 2015.

Classification Guidelines

Some carcinomas can <u>only</u> be definitively diagnosed on <u>resection</u> (not on Bx): Adenocarcinoma in situ, Minimally invasive carcinoma, Adenosquamous carcinoma, Large cell carcinoma, Sarcomatoid carcinoma, Pleomorphic carcinoma, giant cell carcinoma, fetal adenocarcinoma, colloid adenocarcinoma, enteric adenocarcinoma.

If you can make the diagnosis morphologically ightarrow can call Adenocarcinoma or Squamous cell carcinoma

If can't tell morphologically, then do stains:

A simple panel of 2 stains (1 squamous and 1 adenocarcinoma) is usually adequate (e.g., p40 and TTF1) A positive mucin stain (e.g., PAS-D, or mucicarmine) can also identify some adenocarcinomas.

→A mucin stain is supposed to highlight >5 intracytoplasmic mucin droplets in at least 2 HPFs Report as "Non-small cell carcinoma, <u>favor</u>...." (either adenocarcinoma or squamous cell carcinoma) Do not do neuroendocrine stains unless there are morphologic findings to suggest neuroendocrine differentiation (neuroendocrine differentiation in an SCC or Adeno doesn't impact treatment/prognosis).

Immunohistochemical Staining				
Adenocarcinoma	Squamous cell carcinoma			
TTF1	p40 (most specific)			
Napsin A	СК5/6			
CK7 (less specific)	p63 (less specific)			

Note: Some primary lung adenocarcinomas, including Mucinous adenocarcinoma, Colloid carcinoma, and Enteric adenocarcinoma, can be TTF-1 negative. They can even stain with CK20 and CDX2. These cases require careful clinical correlation to exclude a <u>metastasis</u> from the GI tract.

IHC typing of a Cytokeratin-positive, morphologically undifferentiated non-small cell carcinoma (NSCC). Sarcomatoid carcinoma and neuroendocrine tumors should also be considered.

TTF1 Napsin-A	p63	p40	СК5/6	Resection Dx	Biopsy Dx
+	-	-	-	Adenocarcinoma	NSCC favor Adenocarcinoma
+	+	-	-	Adenocarcinoma	NSCC favor Adenocarcinoma
+	+	+ (focal)	-	Adenocarcinoma	NSCC favor Adenocarcinoma
+	-	-	+ (focal)	Adenocarcinoma	NSCC favor Adenocarcinoma
-	Any one of the above <u>diffusely</u> positive		Squamous cell carcinoma	NSCC favor SCC	
-	Any one of the above <u>focally</u> positive		Large cell carcinoma	NSCC, NOS	
-	-	-	-	Large cell carcinoma	NSCC, NOS

Adapted from: WHO Classification of tumors of the lung, pleura, thymus, and heart. 2015 & 2021.