Bladder Tumors

Normal Anatomy

<u>Urothelium</u>: Thickness depends on distention of bladder. Normal thickness = 2-7 cells.

Basal and intermediate layer are often cuboidal to columnar Normal urothelial nucleus is about the size of 2 lymphocyte nuclei Top <u>Umbrella/Superficial layer are large, sometimes binucleate</u> with abundant eosinophilic, sometimes vacuolated cytoplasm

Lamina Propria: Contains vessels, connective tissue, nerves, and thin, wispy, haphazard, scattered muscularis mucosae

Muscularis propria (Detrusor muscle): More organized, thick bundles of muscle

Adventitia: Connective Tissue outside muscle. Serosa at dome.

Normal Variations

von Brunn Nests:

<u>Invaginations of the surface urothelium</u>into underlying lamina propria. Normal urothelium thickness & cytology. Round shape (not infiltrative), uniform size.

If lots of small nests, irregular size, stacked on top of each other \rightarrow consider nested variant of urothelial carcinoma

Cystitis Cystica:

Name used when these nests become cystically dilated

Cystitis Glandularis:

Name used when lining undergoes glandular metaplasia

Distended Non-distended

Distended (2-3 cells)

Non-distended (5-7 cells)

Telles .

Prepared by Kurt Schaberg

Urothelial Tumors

Most common in **older males**. Risk factors include **smoking**, occupational exposures (e.g., paints and exhaust), radiation, and Schistosoma. Most commonly present with **hematuria**

Location: <u>90% in Urinary bladder</u>; 10% upper tract; Can often be <u>multifocal</u> (often attributed to a "field defect")

Molecular: Very high mutational rate (second only to lung!). Two main pathways

- **1.** Large chromosomal alterations: loss/gain of large chromosomal fragments occur, corresponding to higher grade tumors
- 2. Recurrent mutations: Frequent mutations include deactivating TP53 and activating FGFR3. Very common, TERT promoter mutations→ lengthens telomeres. Others include PIK3CA, RB1, and HRAS

Lynch Syndrome→ increased risk of urothelial neoplasms (esp. MSH2), particularly upper tract

Two main categories: 1) Flat, 2)Papillary

<u>Flat</u> lesion (No papillary structures!) Often erythematous on cystoscopy

High-grade cytology (Pleomorphism):

- Frequent nucleomegaly (usually <u>>5x lymphocyte nucleus</u>)
- Hyperchromasia

Disorder: Loss of polarity; Nuclear crowding;

Increased cytoplasmic eosinophilia Does NOT need to be full-thickness (can show Pagetoid spread)

Can be discohesive \rightarrow shed into urine \rightarrow remaining cells = "Clinging carcinoma"

IHC to help distinguish CIS from Reactive:

		СК20	P53	Ki67		
1-10	Normal/Reactive	Umbrella cells <u>only</u>	Wild-type	Low (usually)		
•	CIS	All cells (full-thickness)	Diffuse or Null	High		
•	Prognosis: ~25% progress to invasive disease					

Treatment: Cystoscopic observation, Intravesical BCG Therapy

Urothelial Dysplasia

<u>Flat</u> urothelium with appreciable cytologic and architectural features that are believed to be preneoplastic, but <u>do not reach the threshold of CIS</u>.

No consensus criteria. Tremendous inter-oberserver variability.

Not diagnosed routinely in clinical practice as a result

Some use terms like: "Atypia of unknown significance" or "Urothelial atypia, cannot exclude dysplasia" as are treated clinically similar

Given lack of consensus in diagnosis, prognosis not well-established

Papillary Neoplasms

<u>Fibrovascular cores</u> covered in urothelium. <u>Hierarchical branching</u>

	Papilloma	PUNLMP	Low-grade, Papillary carcinoma	High-grade, Papillary carcinoma
Architecture of papillae	Delicate	Delicate	Fused to branching	Fused to branching
Architecture of cells	Normal	Polarity like normal; Ordered , <u>no</u> variation	Ordered, but <u>with</u> variation	Disorder!
Nuclear size	Normal	Normal to slightly enlarged	Enlarged with variation	Enlarged with variation
Nuclear shape	Normal	Oval-round; uniform	Round-oval; slight variation	Moderate to marked pleomorphism
Umbrella cells	Uniformly present	Present	+/-	+/-
Mitoses	Absent	Rare, basal	Occasional, any level	Frequent, at any level

Modified from: Epstein et al. Biopsy Interpretation of the Bladder. Wolters Kluwer, 2017.

Papilloma

Papillary urothelial neoplasm with **delicate** fibrovascular cores covered by urothelium of <u>normal appearance and thickness</u>

Relatively rare

Prognosis: Recurrence rate ~10%; Progression to carcinoma ~1% Treat with TURBT

Papillary Urothelial Neoplasm of Low Malignant Potential (PUNLMP)

Papillary urothelial neoplasm with **minimal atypia** Epithelial thickness usually exceeds normal (>7 cells)

Lots of order, little variation \rightarrow every high-power field should look the same

Overall, <u>monotonous</u> appearance. Maintained cell polarity

Often hard to distinguish from Low-grade papillary urothelial carcinoma→ sometimes low interobserver agreement→ for both, treatment is TURBT and observation

One HPF should

Non-Invasive Papillary Urothelial Carcinoma, Low-Grade

Relatively delicate papillae with extensive branching **Relatively orderly, but with some variation at high-power**

Mild to <u>moderate nuclear pleomorphism</u> Any thickness, but <u>often thicker than normal</u>

<u>Cell polarity maintained (cells know which way is "up")</u>

Inconspicuous nucleoli.

Grade based on highest-grade component (at least if >5%)

Recurrence rate ~30%; Treat with TURBT & surveillance

Non-Invasive Papillary Urothelial Carcinoma, High-grade

Disordered appearance: Architectural and cytologic abnormalities

Loss of cell polarity. Irregular spacing and nuclear overlap. Often discohesive.

<u>Nuclear pleomorphism</u>, hyperchromasia, clumped chromatin. Sometimes prominent nucleoli.

Often fusion of papillae

Recurrence rate ~50%; Treat with TURBT & surveillance

Urothelial Proliferation of Uncertain Malignant Potential (UPUMP)

Markedly <u>thickened</u> urothelium (> 10 cells) No or <u>minimal atypia</u> Increased cell density

<u>No</u> true papillary fronds with fibrovascular cores

Undulating mucosal folds

Clonal. May be early pre-cursor to lowgrade papillary urothelial carcinoma (often at "shoulder"). Followed clinically.

Inverted Urothelial Lesions

- Complex, <u>branching</u>, <u>anastomosing</u> inverted growth cords of urothelium
- Peripheral basal cells in nests
- **Smooth stromal-epithelial interface** (no infiltrative growth)
- No stromal reaction
- Do not involve muscularis propria
- May have cystic areas (like cystitis cystica)

Inverted Urothelial Papilloma

- 5-10 cells layers thick
- <u>No</u> significant atypia
- Benign with low recurrence risk

Inverted Papillary Urothelial Carcinoma

- More than 10 cell layers thick
- More nodular, expansile growth
- More mitoses
- More significant cytologic atypia
 - Irregular chromatin
 - Enlarged, irregular nucleoli

Invasive (Infiltrating) Urothelial Carcinoma

Invasive beyond the basement membrane

Usually, cytologically **High-Grade** (Nuclear pleomorphism, Hyperchromasia, Numerous mitoses)

Moderate amounts of eosinophilic cytoplasm

<u>Various architectures</u> (nests, single cells, etc...), but often elicits a **desmoplastic stromal response**

<u>Diversity</u> in morphologic manifestations, including specific variants and divergent differentiation.

IHC: GATA3, Uroplakin III, Thrombomodulin, High-Molecular Weight Cytokeratin (e.g., CK5/6), p63, p40, CK7, CK20, S100-P

Divergent differentiation:

Squamous—intercellular bridges and/or keratinization. Very common (up to almost 50% of urothelial cancers)

Glandular—presence of gland formation (up to 20%). Often has enteric appearance and immunophenotype

Trophoblastic—giant cells resembling syncytiotrophoblasts. Can secrete βhCG.

Specific Variants:

Plasmacytoid—Bland cells resembling plasma cells. Ecadherin loss (like lobular breast). Express CD138. Aggressive. Poor prognosis.

Micropapillary—Nests surrounded by lacunae. Peripherally located nuclei. Aggressive. Often high stage.

Nested—Cytologically bland discrete to crowded infiltrating nests. Can be hard to dx on biopsy unless into muscle.

Lymphoepithelial-like—High-grade syncytial cells with prominent inflammatory infiltrate. EBV negative.

Sarcomatoid—Resembles a sarcoma, possibly including heterologous differentiation (e.g., osteosarcoma).

(And others!)

Diagnosis of Lamina propria invasion:

Can be challenging ightarrow Look especially hard in high-grade tumors

Pattern of invasion: <u>single cell infiltration</u>, <u>irregularly shaped</u>, <u>jagged</u>, <u>haphazard nests</u>, finger-like projections, architecturally complex proliferations not conforming to normal papillary neoplasms

Paradoxical maturation: invading cells have more abundant cytoplasm and more pleomorphism

Stromal response: <u>desmoplastic stroma</u>, <u>retraction artifact</u>, inflamed stroma, myxoid stroma (although sometimes there is <u>no</u> response!)

Potential pitfalls:

Tangential sectioning/von Brunn's nests→ Smooth, round, regular contours of cells that look like the surface favors non-invasive/benign

Thermal injury→ don't over interpret burned tissue

Muscularis propria invasion:

A big decision clinically, if stage T \ge 2 (into musclularis propria), then often proceed with "definitive therapy" (chemo then cystectomy). If T <2, then often conservative treatment with TURBT

For muscularis propria invasion, look for thick, organized smoot muscle bundles

Thin, wispy muscle with associated vessels \rightarrow favors muscularis mucosae Some use smoothelin (stronger in muscularis propria) and vimentin (stronger is musclaris mucosae) IHC to distinguish the two, but this can be problematic and is not recommended routinely

Other Epithelial Tumors

Squamous Cell Carcinoma

Pure SCC has <u>no</u> urothelial component (<u>otherwise just squamous differentiation</u> in urothelial carcinoma—which is much more common!) Uncommon in US, but <u>predominates in some parts of Africa and Middle-east</u>, largely related to

prevalence of Schistosoma haematobium

Other risk factors: Smoking, occupational, chronic UTI's **Chronic inflammation** \rightarrow Increased proliferation and oxidative stress \rightarrow Squamous metaplasia \rightarrow keratinizing dysplasia \rightarrow SCC

Keratin pearls and intercellular bridges. No urothelial CIS or traditional urothelial component.

Neuroendocrine Tumors

Small cell neuroendocrine carcinoma—same has pulmonary (and other organ) small cell carcinoma. Frequently associated with traditional urothelial carcinoma (that then de/transdifferentiates). Can express TTF1. Aggressive.

Large cell neuroendocrine carcinoma—Very rare. Aggressive.

Well-differentiated neuroendocrine tumors—resemble those of the GI tract. Often have prominent pseudoglandular pattern (resembling cystitis cystica/glandularis). Often mucosal and excellent prognosis.

Nephrogenic Adenoma

Benign

Often arise in the setting of prior urothelial injury

Histologic spectrum: **Tubules** lined by cuboidal to columnar cells **Papillary** structures **Fibromyxoid** variant has <u>spindled cells</u> surrounded by fibromyxoid stroma

Cells can be **hobnailed** Often <u>thick basement membrane</u> No significant nuclear atypia

Histogenesis is a little controversial. <u>Possibly derived from shed renal</u> <u>tubule cells</u>→ Stain with **Pax8** by IHC

Villous Adenoma

Histologically identical to colonic adenomas

(Hyperchromatic, pencillate nuclei) Papillary architecture. Rare.

Can progress

Adenocarcinoma

<u>Purely glandular</u> malignant tumor (as opposed to divergent glandular differentiation in a urothelial carcinoma)

Can be hard to distinguish from a GI metastasis. IHC: β-Catenin strong <u>nuclear</u> reactivity in most colon cancers, but not in bladder adenocarcinomas. Other markers (e.g., CDX2) can be positive in both

Urachal Carcinoma

Arise from urachal remnants. Often adenocarcinomas. Frequently intestinal-type and/or mucinous appearing

Criteria:

- 1) Location in bladder dome or anterior wall (midline)
- 2) Epicenter in bladder wall (not mucosal)
- 3) Absence of widespread cystitis cystica near tumor
- 4) Absence of other known primaries

Clear Cell Carcinoma

Derived from pre-existing Müllerian precursors

(Accordingly more common in women, can also get endometrioid carcinomas)

Most common in **urethra**, bladder neck, and trigone.

Characteristic morphology:

Abundant clear to eosinophilic cytoplasm. Severe cytologic atypia. Hyperchromatic nuclei. Varied architecture: Tubules, papillary, diffuse, etc..

IHC: Positive CAM5.2, **CK7**, **PAX8**, HNF1β, AMCAR Negative PSA, PSAP, p63, HMWCK, ER, PR, GATA3

Often advanced with poor prognosis.

Paraganglioma

Present with symptoms of **catecholamine secretion** Urinate \rightarrow Hypertension or loss of consciousness

Derived from paraganglion cells of the bladder, so submucosal

Typical architecture: "**Zellballen**" with nests separated with a <u>rich vascular network</u> of sustentacular cells.

Cell have amphophilic to acidophilic cytoplasm

IHC: **Synaptophysin**/Chromogranin positive in tumor cells; **S100**/Sox10 positive in sustentacular cells. CK negative. **GATA3 positive**.

Germline SDH mutations present in some cases (Carney-Stathakis syndrome) with familial GIST

Often benign behavior if low stage, but can metastasize.

Polypoid cystitis

Benign. Reaction to any inflammatory insult (most commonly an indwelling catheter)

Submucosal edema, fibrosis, and inflammation → broad bulbous projections covered with reactive urothelium

(*No* epithelial branching, epithelial thickening, atypia or delicate cores, like in papillary neoplasms)

Inflammatory Myofibroblastic Tumor

Fibroblastic/myofibroblastic origin Most common in children and young adults

Loose stellate to spindled cells in a myxoid background

Admixed inflammatory cells Mild amounts of collagen <u>Infiltrative</u>, often into muscle Mitoses, but <u>no atypical</u> ones Delicate vascular network NO significant hyperchromasia

IHC: Positive SMA; Sometimes aberrant CK; ALK positive in ~60% (FISH or IHC) Neoplasti

May recur, but very rarely metastasize. Usually treated with TURBT or partial cystectomy

Pseudosarcomatous Myofibroblastic Proliferation

Aka: "inflammatory pseudotumor," or "Post-operative spindle cell nodule"

Can get what are thought to be reactive spindle cell lesions after instrumentation.

A little <u>controversial</u> if this is the <u>same entity as inflammatory</u> <u>myofibroblastic tumor (IMT)</u>

- <u>Identical appearance (nodular fasciitis-like with</u> inflammatory cells and myxoid background)
- Identical IHC in many cases
- Some people use a <u>single combined Dx (IMT/PMP)</u>

Leiomyosarcoma

Malignant tumor arising from or differentiating along the lines of **smooth muscle**.

Most common urinary bladder sarcoma

Infiltrative. Intersecting fascicles. Eosinophilic spindled cells with cigar-shaped nuclei Cytologic atypia, high cellularity, mitotic activity, tumor necrosis.

IHC: Positive SMA, desmin, h-caldesmon, calponin

Poor prognosis

Neoplastic (clonal)

Myofibroblastic Proliferations

Reactive (after instrumentation)

Rhabdomyosarcoma

Malignant tumor with skeletal muscle differentiation

Often Children and Embryonal subtype

Composed of <u>primitive spindled to rhabdoid cells</u> in a myxoid background. Numerous <u>rhabdomyoblasts</u> and/or strap cells. Can see cross-striations.

Botryoid type forms multiple grape-like polypoid projections with characteristic cellular cambium layer below mucosa

IHC: Positive Desmin, MyoD1, Myogenin. Sometimes patchy CK or neuroendocrine markers.

(Very rare in adults, more commonly sarcomatoid urothelial carcinoma with heterologous differentiation)

Other Mesenchymal Tumors

PEComa Angiosarcoma Solitary Fibrous Tumor Leiomyoma Hemangioma Granular cell tumor Neurofibroma

Immunohistochemistry for Spindle Cell Lesions of the Bladder

Recommended First Panel: ALK1, SMA, desmin, cytokeratin (AE1/AE3), GATA3, and p63 with a HMWCK (e.g., CK5/6) *(with possible second panel with myogenin, S100, etc..)*

IHC Stain	IMT/PMP	Sarcomatoid Carcinoma	Leiomyosarcoma	Rhabdomyosarcoma
ALK1	+/-	-	-	-
SMA	+/-	+/-	+	-/+
Desmin & h-caldesmon	-/+	-	+	+
Myogenin & MyoD1	-	-	-	++
CK AE1/AE3	-/+	+/-	-	-
p63 & p40	-	+	-	-
HMWCK (e.g., CK5/6)	-	+	-	-
GATA3	-	+/-	-	-